This paper has been accepted and presented at RELENG'14, and has been archived on the workshop website
at http://releng.polymtl.ca/. Each submission was peer-reviewed by three members of the program committee

(a mixture of researchers and practitioners).

Contrasting Development and Release Stabilization Work
on the Linux Kernel

Md Tajmilur Rahman
Concordia University
Montreal, Quebec, Canada
mdt_rahm@encs.concordia.ca

ABSTRACT

Releasing software involves stabilizing recent development
efforts. In this paper we contrast the development period,
which involves implementing new features and other major
changes, and the stabilization period, which allows for only
bug fixes to regressions. In the context of the Linux Kernel
we characterize development and stabilization in terms of
process, developer effort, developer work areas, commit lag
time to release, and the number of changes that are rushed
into a release. We find the following. Linux has a relatively
long stabilization period (median 2 months). A small group
of 55 and 23 developers control the development and sta-
bilization periods, respectively. Much of the re-work done
during stabilization is not done by the original developer.
The Linux project does not allow developers to rush changes
into a release.

1. INTRODUCTION

Large software projects make thousands of changes between
releases. During development, new features and other major
changes are implemented. Since new changes have been
exercised by relatively few developers and end users, they
can have a destabilizing effect on the overall software project.
To minimize the disruption on others, developers try to isolate
functionally independent changes on separate branches or
lines of development. Before a new version of the system can
be created, these development branches must be integrated
and stabilized. A release will be composed of all the features
added to the stabilization branch. Once the features have
been added, the stabilization branch will only accept bug fixes
to regressions. We characterize and contrast development
and stabilization work in the following research questions.

RQ1, Release Process: What release process does Linux use?
An understanding of the release process provides context for
our findings and guides our data mining methodology.

RQ2, Developer Effort: How much effort is expended during
development vs stabilization? We want to contrast the effort
expended on normal development activities with the effort
involved in integration and stabilization of the software for
release.

RQ3, Developer Work Area: Do developers work in the same
set of files during development and stabilization? During
stabilization, no new features are allowed and Linux devel-
opers are expected to fix any regressions in the code that
they wrote during development. We compare the files and
work areas of developers on development and stabilization
branches.

Peter C. Rigby

Concordia University
Montreal, Quebec, Canada

peter.rigby@concordia.ca

RQ4, Lag Time: How long does it take for development vs
stabilization changes to be released? Previous work has mea-
sured the time amount of time for a change to be released [3],
but ignored the different purposes of changes. We measure
how quickly bugs are fixed (stabilization) and new features
incorporated (development) into the kernel.

RQ 5, Rush-to-Release: Is there a rush-to-release period?
The longer the release cycle, the more likely developers will
rush in changes so as to avoid waiting for the next release.
We measure the amount of churn that occurs before the
release stabilization begins.

2. BACKGROUND AND PROCESS

In the early days of Linux development releases were some-
times made more than once per day, prompting Raymond’s
mantra of “release early, release often” [8]. This trend has
continued with many projects adopting increasingly shorter
release intervals [4]. For example, Google Plus can release
new changes in 36 hours [6] and Firefox and Chromium op-
erate on six week release cycles [4]. In contrast, Linux has
adopted comparatively long release cycles.

RQ1, Release Process: What release process does Linux use?
Linux using a flexible time-based release schedule [5], which
consists of a merge window and stabilization period (See
Figure 1). The merge window opens to allow developers to
merge changes into the stabilization mainline. The window is
open for only two weeks with a standard deviation of 2 days.
After the window closes, the first release candidate (rcl) will
indicate the start of release stabilization. During stabilization
only fixes to regressions and isolated changes, such as device
drivers, are merged into the mainline. The time period for
stabilizing a release continues until no important regressions
are outstanding. Stabilization takes an average of 62 days
with a standard deviation, minimum, and maximum of 10,
45, and 93 days, respectively. Figure 2 shows the variations
in the Linux release cycle.

Linux clearly has a longer release cycle than Firefox and
Google projects. For Firefox, the rapid release cycle has lead
to an increasing reliance on automated tests as the commu-
nity is unable to manually test such frequent releases [4]. In
contrast, Linux has few automated tests and relies on devel-
opers to test their changes before inclusion in a maintainer’s
repository. The community uses and tests the mainline for
regressions during release stabilization. It is possible that
this lack of a large automated test suite increases the length
of the release cycle.

Another interesting difference is that Google uses few branches

Reviewer
Text Box
This paper has been accepted and presented at RELENG'14, and has been archived on the workshop website at http://releng.polymtl.ca/. Each submission was peer-reviewed by three members of the program committee
 (a mixture of researchers and practitioners).

Total Time for Release Cycle

First commit for the new release Merge Window

@

Stabilization
Stable Release

S A S A I

i

Develop Period

-t -

NP

Changes to Stabilization Line

Figure 1: Linux Release Process. Development of subsequent releases occurs in parallel with the stabilization
of a release. The two stages join during the merge window where new development is moved onto the

stabilization mainline.

- Mean (Release Cycle)

- — — — - Mean (Merge Period }

Figure 2: Time periods for stabilization and merge window

compared with Linux [6]. The Linux maintainers file contains
over 60 different repositories (i.e. branches) covering more
than 600 topics that crosscut kernel development [9]. This
distribution allows functionally independent development
efforts to co-exist without conflict and for stabilization and
development to proceed in parallel.

3. METHODOLOGY

Development and stabilization work occurs in parallel on
different branches, so one cannot differentiate between them
based on the time a change was authored or committed (e.g.,
a development change may be made during the stabilization
period). Instead one must look at whether the change was
made on a development branch or the stabilization branch.

To determine the type of branch a change was made on,
one must examine what Linux developers refer to as the
mainline [5]. Branches and, by extension, commits that
are merged into the mainline will become part of the next
stable release. However, as described above, the mainline
goes through two distinct phases: the merge window and the
stabilization period. The tags on this mainline dictate the
type of work (stabilization or development) that occurred
on the branches that merge with the mainline. The merge
window is open between a stable release tag (i.e. a tag that
doesn’t contain rc, such as 2.6.14) and the rcl tag. Any
change that is merged onto the mainline between these tags
is a development change. In contrast, any change that is
merged on the mainline between the rcl and a stable release

200k

Churn: number of changed LOCs (log)
50k

10k

T T
Development Stabilization

Figure 3: Churned lines of code per release for development
and stabilization

is a stabilization change. By walking the git directed cyclic
graph we are able to determine which branch a change is
made on. Details of the algorithm used can be found in a
technical report.!

4. RQ2 - DEVELOPER EFFORT

How much effort is expended during development vs
stabilization?

In order to quantify the effort involved, we measure the
number of commits, churn (number of lines that changed in
‘.¢” and ‘.h’ source files), and the number of people working
on the stabilization vs development branches. These basic
measures give us a sense of effort involved in developing and
releasing Linux.

We find that, of the total 381k commits made to the kernel
between 2005 and 2013, 77% of commits are made during
development and 23% are made as part of stabilization. In
Figure 3, the median development churn per release is 834k
lines compared to the stabilization churn of 83k lines. In the
median case 91% of the lines changed for a release are made
in development with a ratio of 105 lines churned per commit,
while 9% of lines changed are during stabilization with 41

!Algorithm for traversing the git DAG http:
//tajmilur-rahman.com/git_dag.pdf

100
1

80

60
|

Percentage of Chumn

40

20

""" Fraction of Churn in Stabilization
—— Fraction of Churn in Development
T T T T T T

0 50 100 150 200 250 300

Number of Developers

Figure 4: Cumulative distribution of developer contributions

800

Devs re-worked by others
No re-work

Linear (No re-work)

Devs re-working own work

Number of Developers

200 . ,----__C‘_z,

Figure 5: Developers re-working files during stabilization

lines churned per commit.

In terms of developers, 10K developers have contributed to
Linux, however, 55 developers have done 80% of the devel-
opment work, while 23 developers have done 80% of the
stabilization work (See Figure 4). This result is similar to
Mockus et al’s [7] finding that the Apache httpd server had
a core group of 15 developers who wrote 80% of the code.
Linux is a much larger project, we see that during stabiliza-
tion 23 developers control the stabilization process. Mockus
et al. noted that as a system grows, e.g., Mozilla, more com-
plex mechanisms must be used to manage it. In order to
integrate the development effort from the larger group of 55
developers that account for 80% of the development effort
a chain-of-trust is used to pass changes from less trusted
developers up to the trusted stabilization mainline that Tor-
valds controls and makes releases from [5]. Stabilization
work occupies the majority of Torvalds’s time and clearly
represents large contributions from other core developers.
Future work is necessary to compare the level of development
and stabilization effort on other projects.

5. RQ3-DEVELOPER WORK AREA

Do developers work in the same set of files during
development and stabilization?

The Linux Kernel has a policy that ‘the original developer
should continue to take responsibility for the code [they
contribute]’ [5]. We expect to see developers who modify files

during development to fix any problems with those files that
arise during stabilization. Of the files that receive rework,
we measure the proportion that are done by the original
developer vs those that are modified by other developers.

We found that, in the median case per release, there are 161
developers who re-work the same files they modified during
development, 480 developers who had their files re-worked
by other developers during stabilization, and 171 developers
whose changes did not require any re-work during stabiliza-
tion. These sets of developers are not mutually exclusive.
Figure 5 depicts this situation. From these numbers, it would
appear that many developers do not take on the responsibil-
ity to fix their bugs for a release. Instead a small group of
maintainers (See Figure 4) is responsible for integration and
bug fixes of regressions during stabilization. We also note
a possible trend in Figure 5 that the number of developers
who made changes that do not need re-work is increasing.

An alternative explanation, and threat to construct validity,
is that integrators are not fixing other developers’ bugs, but
are re-working the same files to integrate other sets of changes.
While a finegrained, line level analysis is left to future work,
it is surprising that the majority of files that need re-work
were modified by a different developer.

6. RQ4-LAG TIME

How long does it take for development vs stabilization changes
to be released?

We define lag time as the number of days it takes for a
change to be integrated into the mainline or a final release.
Jiang et al. [3] examined the factors that influence lag time
on the Linux Kernel. They found large variation in lag
times (3 to 6 months), with experienced developers having
drastically shorter times. In this work, we are interested in
differentiating between development and stabilization work
because we want to understand how quickly bugs are fixed
(stabilization) and new development incorporated into the
kernel.

In Figure 6, we see that stabilization changes take a median of
only 8 days to be included in the mainline, while development
changes take 35 days to reach the mainline. The median
lag time to a release is 47 and 97 days for stabilization and
development changes, respectively. Since a small group of
expert developers make the majority of stabilization changes
(See Figure 4), it would be interesting to add the type of
change to Jiang et al.’s [3] statistical model of lag times.

7. RQS - RUSH-TO-RELEASE

Is there a rush-to-release period?

According to Fogel [1], the greater the time between releases,
the more developers will rush changes into the current re-
lease in order to avoid waiting for the next release cycle.
To empirically test Fogel’s statement, we examine the peak
weekly churns. We define the peak churn as the top 10%
of weekly churned lines. We hypothesize that the peaks
in the merge window will be higher than the peaks in the
normal development period. A Kolmogorov-Smirnov test
of the two distributions gives a p-value of 0.18 indicating
that the peak weekly churn in the merge window cannot be
statistically differentiated from the peaks in normal develop-
ment. Figure 7 visually demonstrates the absence of a rush

. Transit to Mainline
[Transitto Release

500
1

Transit time in days (log)
50
1

Development Stabilization

Figure 6: Lag for the commits to mainline and release

Development Stabilization

250000

200000

150000

100000

Number of Chums Per Day

50000 |

92

Merge Window

Figure 7: Time series of daily churn for all releases, anchored
at the start of the release stabilization period for each release (i.e.
rcl)

before stabilization begins. Although there are clear peaks in
the figure, the peaks immediately before the release process
begins appear no larger than earlier development peaks. It
is also interesting that some rare commits take over a year
to be committed into the mainline and released.

While Linux has a relatively long stabilization period, the
Kernel is know for being conservative about new features [5],
which likely reduces any rush period before release stabiliza-
tion begins. Furthermore, the far right portion of Figure 7
shows a drastic reduction in churn right before the final
stable release is made.

8. CONCLUSION

In this work we differentiated between normal development
work and stabilization work. Previous studies of release en-
gineering have looked at the time immediately before and
after a release (e.g., [2]) or combined development and stabi-
lization work to examine the entire development cycle (3, 4].
In our study we found the following.

Process: Although Linux spends a median of two months
stabilizing a release, development effort continues on other
branches with some changes being over a year old (See Fig-
ures 2 and 7).

Effort: A large number of developers contribute to Linux,
however, 80% of the changes are made by 55 and 23 develop-
ers during development and stabilization, respectively (See
Figure 4). A small group of developers ensures that each
release of Linux is stable.

Work area: The large majority of developers who make a
change during development will not fix regressions in the files
that they changed. While a fine-grained, line based analysis
might produce a different result, it appears to violate the
policy that ‘the original developer should continue to take
responsibility for the code [they contribute]’ [5].

Lag time: Stabilization changes, such as bug fixes, take a
median of only 8 days to be integrated into the mainline.
Development changes take a median of 35 days to reach the
mainline (See Figure 6).

Rush-to-Release: Despite a relatively long release cycle, Linux
does not allow changes to be rushed into a release. The
emphasis on a stable product by core developers likely curbs
this impulse (See Figure 7).

This preliminary work has many avenues of future work.
Currently our findings describe Linux development, but do
not tie different styles of development to outcome measures.
For example, we are in the process of examining the impact
of the ‘fix your own code policy’ on the number of regressions
seen in a file. We are also keen to replicate this study and
extend this study on other software projects.

9. REFERENCES

[1] K. Fogel. Producing Open Source Software. O'Reilly,
2005.

[2] A. Hindle, M. W. Godfrey, and R. C. Holt. Release
pattern discovery via partitioning: Methodology and
case study. In Proceedings of Mining Software
Repositories, MSR ’07, 2007.

[3] Y. Jiang, B. Adams, and D. M. German. Will my patch
make it? and how fast?: case study on the linux kernel.
In Proceedings Mining Software Repositories, pages
101-110. IEEE Press, 2013.

[4] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do
faster releases improve software quality? an empirical
case study of mozilla firefox. In Proceedings of Mining
Software Repositories, pages 179-188, June 2012.

[5] Linux. The linux kernel development process.

https://www.kernel.org/doc/Documentation/

development-process/2.Process Accessed February

2013.

J. Micco. Tools for Continuous Integration at Google

Scale. Google Tech Talk, Google Inc., 2012.

[7] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache
and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1-38, 2002.

[8] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly

and Associates, 1999.

P. C. Rigby, E. T. Barr, C. Bird, P. Devanbu, and D. M.

German. What effect does distributed version control

have on oss project organization? In International

Workshop on Release Engineering 2018, 2013.

6

9

