Dependency Management
for Continuous Release

Chuck Karish
chuck.karish@gmail.com



Continuous release

1. Automate everything.
2. Tests

a. run early, run often
b. enough coverage to ensure release success

3. Release frequently, a few changes at a time
4. Be prepared to roll back.
5. Allow for multiple versions live at once.



Continuous release for a startup?

e Project is fast when code base is small
e As the project matures all tasks take more
time, more structure is needed

e Slowness makes developers less productive,

less confident
o Speedup makes code better



Testing: Fast and complete

Shorter developer work cycle

Prompt feedback: developer confidence
Predict success of release

Run all needed tests for every change




Big company dev workflow (Google)

http://google-engtools.blogspot.com/

e Central source control, access through FS

e Aggressive caching of build artifacts, reliable
iIncremental build

e Dependency server chooses tests to run

e Release and deployment framework holds
configs, customizations, results



Why is it fast?

e Build tool works like an IDE, has metadata
and list of modified files in memory

e Test framework knows reverse
dependencies for each file, runs only
relevant tests

e Brute force: build and test caches use lots of
compute machines, lots of storage, lots of
net bandwidth



Only buzz_client_tests are run and
only Buzz project needs to be updated.

@z_client_t@ gmail_client_tests

youtube_client

gmail_client

gmail_servergtests buzz_server_tests

buzz_server

gmail_server youtube_server

common_collections_util

(taken from google-engtools.blogspot.com)



What about the little guys?

e (it: devs may not see each other’'s work right
away

e Conventional build tools

e Run all tests to be safe

e Open source frameworks for ClI, release,
cloud system management

e Maven and Jenkins: deps at package
granularity



Easy fixes

e Frequent merges to a shared repository, so
the CI server stays up to date

e Incremental compiles

e Testing is still slow



Why dependencies matter

Minimize side effects of changes

Code is easier to understand

Unit tests can be more focused

Fewer tests need to be run for each change



An open-source dependency server?

Why?

e [0 calculate reverse dependencies so

only the tests that depend on a modified
file need to be run.

e Potential for substantial speedup



An open-source dependency server?

How?

e Put all deps in build config files
e Extract reverse dependencies from test

targets
o Specified dependencies must be precise

e |Incremental updates
e On-the-fly updates for presubmit
e Deliver through a Jenkins plugin?



An open-source dependency server?

Extra credit: work at file granularity (it's messy)

e Java: instrumented classloader for tests
e C, C++: mine debug metadata
e Static analysis using modified compilers



