
Ant Build Maintenance with Formiga

R. Hardt and E. V. Munson
University of Wisconsin-Milwaukee, USA



Research Problem and Motivation

• Build maintenance refers to changes made to the build system as a software project evolves 
over time 

• Adams et. al showed that the build system:

• grows in size and complexity as the source code does

• needs to evolve in parallel with the source code

• Build system maintenance imposes a 12%-36% overhead on the overall development of a 
software project [Kumfert and Epperly]

• Up to 27% of the work items involving production source code changes require 
accompanying build maintenance [McIntosh et. al]

• Despite these facts, little support for build maintenance exists



Background and Related Work

• SYMake [Tamrawi et. al]

• Produces a symbolic dependency graph from a makefile and is used in a tool 
that supports build refactoring and error identification

• Uses static build analysis to analyze the build files allowing it to discover 
information about all build configurations

• MAKAO [Adams et. al]

• Constructs a makefile’s build dependency graph that supports querying and 
filtering and allows for build refactoring and validation

• Uses dynamic build analysis to analyze an execution of the build for a particular 
configuration



Approach and Uniqueness

• Formiga is a build maintenance and dependency discovery tool implemented 
as an Eclipse plugin for use with software projects using the Ant build system

• Primary uses:

• Build maintenance caused by source code refactoring

• Build system refactoring or fine-tuning

• Identification of build dependencies in a software project

• Understanding differences between build file versions (Future Research)



Approach and Uniqueness
Build Maintenance Caused By Source Code Refactoring

• Formiga is able to update build files 
when project resources are moved, 
renamed, or deleted using the IDE

• Developers use the standard Eclipse 
refactoring operations to refactor 
project resources

• Corresponding build updates are made 
automatically, but users may choose to 
require confirmation before each update

• Confirmation displays the affected 
target, task, attribute, and old and 
new attribute values



Approach and Uniqueness
Build Maintenance Caused By Source Code Refactoring

• References to project resources in an Ant build file are updated based on:

• The type of refactoring operation (move, rename, delete, or add) 

• The type of reference

• Indirect: a reference that includes a wildcard pattern

• Direct: a reference that does not include a wildcard pattern

• When references are updated, Formiga uses existing property references 
whenever possible



Approach and Uniqueness
Build Maintenance Caused By Source Code Refactoring

• Moving or renaming a file

• If referenced directly, that reference will be updated to reflect the new path

• If referenced indirectly

• If the existing reference still refers to the file’s new path, no changes will 
be made

• If the existing reference no longer refers to the file’s new path, then a new 
reference will be appended to the existing reference

• Moving a file may imply that it should no longer be treated the same way as 
files in its previous directory, in which case the user can reject the update



Approach and Uniqueness
Build Maintenance Caused By Source Code Refactoring

• Deleting a file

• If referenced directly, that reference will be removed

• If reference indirectly, no changes will be made

• The reference may still refer to existing files or to a path that will later be 
populated with files relevant to the task

• Adding a file

• Formiga does not update the build system but does report affected targets 
and tasks



Approach and Uniqueness
Build System Refactoring or Fine-Tuning

• Target and property renaming 
and removal

• Renaming a target or property 
updates its declaration and all 
references with the new name

• Removing a target deletes it 
and will ask the user if any 
now unused targets should 
also be removed

• Removing a property will 
replace its references with its 
(previously) specified value



Approach and Uniqueness
Identifying Build Dependencies



Approach and Uniqueness
Identifying Build Dependencies

• Dependencies are identified using a modified version of Ant

• Formiga doesn’t execute Ant tasks that read/write to the filesystem

• Instead, Formiga keeps track of the accessed files in its filespace

• The filespace is a virtual filesystem maintained in memory

• Its file models keep track of locations and dependencies

• When the target “execution” has finished, filespace files are written to an 
embedded database

• Mostly dynamic approach with static handling of tools



Approach and Uniqueness
Identifying Build Dependencies

• Configuration handling

• Formiga supports configurations that are implemented using conditionally set 
properties (CSPs)

• CSPs are properties whose value (or instantiation) is set based on the result of 
some condition

• CSPs are created in Ant using the condition, available, and uptodate 
tasks

• When a CSP is referenced within a target, Formiga will “execute” that target and all 
remaining targets twice (once for each CSP value)



Constraints

• Tasks not packaged with Ant and arbitrary execution tasks (AETs) cannot 
be processed in the same way as tasks packaged with Ant

• AETs are Ant tasks that execute a specified command or Java class

• Formiga could support AETs by parsing structured comments that 
describe the input and output files read and written by the task

• Comments could allow Ant property references and wildcard patterns



Contributions

• Formiga’s implementation as an Eclipse plugin allows it to automatically 
update the build files when the project resources are refactored

• This implementation also facilitates ease of use since build maintenance 
operations are similar to source code maintenance operations

• Formiga’s analysis approach allows dynamic analysis benefits without all of 
the costs

• Runs more quickly than a strict dynamic approach as it doesn’t execute 
every tool

• Won’t produce any undesirable side-effects caused by destructive build 
operations



Thank you!


